91 research outputs found

    On Throughput and Decoding Delay Performance of Instantly Decodable Network Coding

    Full text link
    In this paper, a comprehensive study of packet-based instantly decodable network coding (IDNC) for single-hop wireless broadcast is presented. The optimal IDNC solution in terms of throughput is proposed and its packet decoding delay performance is investigated. Lower and upper bounds on the achievable throughput and decoding delay performance of IDNC are derived and assessed through extensive simulations. Furthermore, the impact of receivers' feedback frequency on the performance of IDNC is studied and optimal IDNC solutions are proposed for scenarios where receivers' feedback is only available after and IDNC round, composed of several coded transmissions. However, since finding these IDNC optimal solutions is computational complex, we further propose simple yet efficient heuristic IDNC algorithms. The impact of system settings and parameters such as channel erasure probability, feedback frequency, and the number of receivers is also investigated and simple guidelines for practical implementations of IDNC are proposed.Comment: This is a 14-page paper submitted to IEEE/ACM Transaction on Networking. arXiv admin note: text overlap with arXiv:1208.238

    From Instantly Decodable to Random Linear Network Coding

    Full text link
    Our primary goal in this paper is to traverse the performance gap between two linear network coding schemes: random linear network coding (RLNC) and instantly decodable network coding (IDNC) in terms of throughput and decoding delay. We first redefine the concept of packet generation and use it to partition a block of partially-received data packets in a novel way, based on the coding sets in an IDNC solution. By varying the generation size, we obtain a general coding framework which consists of a series of coding schemes, with RLNC and IDNC identified as two extreme cases. We then prove that the throughput and decoding delay performance of all coding schemes in this coding framework are bounded between the performance of RLNC and IDNC and hence throughput-delay tradeoff becomes possible. We also propose implementations of this coding framework to further improve its throughput and decoding delay performance, to manage feedback frequency and coding complexity, or to achieve in-block performance adaption. Extensive simulations are then provided to verify the performance of the proposed coding schemes and their implementations.Comment: 30 pages with double space, 14 color figure

    Throughput and Delay Optimization of Linear Network Coding in Wireless Broadcast

    No full text
    Linear network coding (LNC) is able to achieve the optimal throughput of packet-level wireless broadcast, where a sender wishes to broadcast a set of data packets to a set of receivers within its transmission range through lossy wireless links. But the price is a large delay in the recovery of individual data packets due to network decoding, which may undermine all the benefits of LNC. However, packet decoding delay minimization and its relation to throughput maximization have not been well understood in the network coding literature. Motivated by this fact, in this thesis we present a comprehensive study on the joint optimization of throughput and average packet decoding delay (APDD) for LNC in wireless broadcast. To this end, we reveal the fundamental performance limits of LNC and study the performance of three major classes of LNC techniques, including instantly decodable network coding (IDNC), generation-based LNC, and throughput-optimal LNC (including random linear network coding (RLNC)). Various approaches are taken to accomplish the study, including 1) deriving performance bounds, 2) establishing and modelling optimization problems, 3) studying the hardness of the optimization problems and their approximation, 4) developing new optimal and heuristic techniques that take into account practical concerns such as receiver feedback frequency and computational complexity. Key contributions of this thesis include: - a necessary and sufficient condition for LNC to achieve the optimal throughput of wireless broadcast; - the NP-hardness of APDD minimization; - lower bounds of the expected APDD of LNC under random packet erasures; - the APDD-approximation ratio of throughput-optimal LNC, which has a value of between 4/3 and 2. In particular, the ratio of RLNC is exactly 2; - a novel throughput-optimal, APDD-approximation, and implementation-friendly LNC technique; - an optimal implementation of strict IDNC that is robust to packet erasures; - a novel generation-based LNC technique that generalizes some of the existing LNC techniques and enables tunable throughput-delay tradeoffs
    • …
    corecore